Bifurcation Set and Limit Cycles Forming Compound Eyes in a Perturbed Hamiltonian System
نویسندگان
چکیده
BIFURCATION SET AND LIMIT CYCLES FORMING COMPOUND EYES IN A PERTURBED HAMILTONIAN SYSTEM JIBIN LI AND ZHENRONG LIU In this paper we consider a class of perturbation of a Hamiltonian cubic system with 9 finite critical points . Using detection functions, we present explicit formulas for the global and local bifurcations of the flow . We exhibit various patterns of compound eyes of limit cycles . These results are concerned with the weakened Hilbert's 16th problem posed by V.I . Arnold in 1977. 1 . Introduction The weakened Hilbert 16th problem, posed by V.I . Arnold in 1977 [1], is to determine the number of limit cycles that can be generated from a polynomial Hamiltonian system of degree n 1 with perturbed terms of a polynomial of degree m + 1 . The separatrixes and relative positions of the limit cycles for the Hamiltonian system with perturbations play an important role [2] . For a polynomial differential system of degree n, the results of [3] imply that, in order to get more limit cycles and various patterns of their distribution,, one efficient method is to perturb a Hamiltonian system with symmetry which has the maximal number of centers . Thus, to study the weakened Hilbert 16th problem, we should first investigate the property of unperturbed Hamiltonian systems, Le ., determine the global property of the family of planar algebraic curves . Then, by using proper perturbation techniques, we can obtain the global information of the perturbed non-integrable system . Only two particular examples were given in the paper [3] . In this paper we discuss the following system : dx dt =Y(, + x2 ay2) + ex(mx2 + ny 2 d = -x(1 cx2 + y2) +ey(mx2 + ny2 where a > c > 0, ac > 1, 0 < e « 1, m, n, A are parameters . Our object is to reveal the bifurcation set in the 5-parameter space . Since the vector field defined
منابع مشابه
Bifurcation of limit cycles from a quadratic reversible center with the unbounded elliptic separatrix
The paper is concerned with the bifurcation of limit cycles in general quadratic perturbations of a quadratic reversible and non-Hamiltonian system, whose period annulus is bounded by an elliptic separatrix related to a singularity at infinity in the poincar'{e} disk. Attention goes to the number of limit cycles produced by the period annulus under perturbations. By using the appropriate Picard...
متن کاملBifurcation of Limit Cycles in Z10-Equivariant Vector Fields of Degree 9
In this paper, we consider the weakened Hilbert’s 16th problem for symmetric planar perturbed polynomial Hamiltonian systems. In particular, a perturbed Hamiltonian polynomial vector field of degree 9 is studied, and an example of Z10-equivariant planar perturbed Hamiltonian systems is constructed. With maximal number of closed orbits, it gives rise to different configurations of limit cycles. ...
متن کاملBifurcation of Limit Cycles in a Cubic Hamiltonian System with Perturbed Terms
Bifurcation of limit cycles in a cubic Hamiltonian system with quintic perturbed terms is investigated using both qualitative analysis and numerical exploration. The investigation is based on detection functions which are particularly effective for the perturbed cubic Hamiltonian system. The study reveals firstly that there are at most 15 limit cycles in the cubic Hamiltonian system with pertur...
متن کاملLimit cycle analysis on a cubic Hamiltonian system with quintic perturbed terms
This paper intends to explore bifurcation behavior of limit cycles for a cubic Hamiltonian system with quintic perturbed terms using both qualitative analysis and numerical exploration. To obtain the maximum number of limit cycles, a quintic perturbed function with the form of R(x, y, λ) = S(x, y, λ) = mx2 + ny2 + ky4 − λ is added to a cubic Hamiltonian system, where m, n, k and λ are all varia...
متن کاملBifurcation of Limit Cycles in a Cubic Hamiltonian System with Some Special Perturbed Terms
This paper presents an analysis on the bifurcation of limit cycles for a cubic Hamiltonian system with quintic perturbed terms using both qualitative analysis and numerical exploration. The perturbed terms considered here is in the form of R(x, y, λ) = S(x, y, λ) = mx+ny+kxy−λ, where m, n, k, and λ are all variable. The investigation is based on detection functions which are particularly effect...
متن کامل